반응형 labradorite-13b1 [논문 리뷰] LAB: LARGE-SCALE ALIGNMENT FOR CHATBOTS 1. 연구 배경 및 목적 대규모 언어 모델(LLM)은 다양한 자연어 처리(NLP) 작업에서 탁월한 성능을 보여 왔지만, 특정 도메인에 맞춤화하여 instruction-tuning을 수행할 때에는 막대한 비용과 시간이 요구됩니다. 특히, 고품질 데이터의 필요성과 GPT-4와 같은 독점적 모델에 대한 의존성은 데이터 접근성과 비용 효율성에서 큰 제약이 됩니다. IBM과 MIT-IBM Watson AI Lab의 연구팀은 이러한 문제를 해결하고자, 합성 데이터를 통한 비용 효율적 학습과 LAB(Large-scale Alignment for ChatBots) 방식을 통해 도메인에 최적화된 학습 방법론을 제안했습니다. Synthetic Labeling Method(SLM)을 기반으로 하는 이 방법론은 대형 모델을 .. 2024. 11. 3. 이전 1 다음 반응형